As a practical matter though, you'll probably be evaluatimigrp for many different points. The
call tolspline can be time-consuming, and the result won't change from one point to the next, so
do it just once and store the outcome invbarray.

In addition tolspline, Mathcad comes with two other cubic spline functions for the two-
dimensional casepspline andcspline. Thepspline function generates a spline curve that
approaches a second degree polynomiedimdy along the edges. Tlspline function generates
a spline curve that approaches a third degree polynomiariy along the edges.

Algorithm Tridiagonal system solving (Pressal, 1992; Lorczak)
lu (Professional) Vector and Matrix
Syntax lu(M)
Description Returns ann x (3[h)  matrix whose finstcolumns contain amx n  permutation matfix

whose next columns contain am x n lower triangular matrixand whose remaining
columns contain am x n  upper triangular matdixThese matrices satisfy the equation

POM =LIU.
Arguments
M real or complexn x n  matrix
Comments This is known as the LU decompostion (or factorization) of the miskripermuted byP.
Algorithm Crout’s method with partial picoting (Pressal, 1992; Golub and Van Loan, 1989)
matrix Vector and Matrix
Syntax matrix(m, n, j
Description Creates a matrix in which thigh element is the valué, j), wherei = 0,1,...,m-1 and
j=01..,n-1.
Arguments
m, n integers
f scalar-valued function
max Vector and Matrix
Syntax max(A)
Description Returns the largest elementAn If A is complex, returns max(R&)) +iffax(Im(A)).
Arguments
A real or complexm x n  matrix or vector
See also min
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Maximize
Syntax

Description

Arguments
f

varl, var2, ...

Examples

Solving
Maximize(f, varl, var2,...)

Returns values ofarl, var2,... which solve a prescribed system of equations, subject to
prescribed inequalities, and which make the fundti@ke on its largest valu&he number of
arguments matches the number of unknowns, plus one. Output is a scalar if only one unknown;
otherwise it is a vector of answers.

real-valued objective function
real or complex variablesarl, var2,... must be assigned guess values before udargmize
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Comments There are five steps to solving a maximization problem:

1. Define the objective functiofn

2. Provide an initial guess for all the unknowns you intend to solve for. This gives Mathcad a
place to start searching for solutions.

3. Type the wordjiven. This tells Mathcad that what follows is a system of equality or
inequality constraints. You can tygiven or Given in any style. Just be sure you don't type
it while in a text region.

4. Now type the equations and inequalities in any order below thegix@d. Use[Ctrl ]=
to type =.”

5. Finally, type theMaximize function withf and your list of unknowns. You can't put
numerical values in the list of unknowns; for examplaximize(f, 2) isn’'t permitted. Like
given, you can typenaximize or Maximize in any style.

The Maximize function returns values as follows:
» If there is one unknowrMaximize returns a scalar value that optimifes

» If there is more than one unknowwaximize returns a vector of answers; for example,
Maximize(f, varl, var2) returns a vector containing valuesvafl andvar2 that satisfy the
constraints and optimie

The wordGiven, the equations and inequalities that follow, andMilagimize function form a
solve block
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By default, Mathcad examines your objective function and the constraints, and solves using an
appropriate method. In Mathcad Professional, if you want to try different algorithms for testing
and comparison, you can choose options from the context menu associatedxiittize

(available via right mouse clickyvhich include:

» AutoSelect- chooses an appropriate algorithm for you

» Linear option- indicates that the problem is linear (and thus applies linear programming
methods to the problem)guess values fararl, var2,... are immaterial (can all be zero)

» Nonlinear option- indicates that the problem is nonlinear (and thus applies these general
methods to the problem: the conjugate gradient solver; if that fails to converge, the Leven-
berg-Marquadt solver; if that too fails, the quasi-Newton solve)ess values forarl,
var2,... greatly affect the solution

* Quadratic option (appears only if the Mathcad Expert Solver product is instaifetizates
that the problem is quadratic (and thus applies quadratic programming methods to the
problem)- guess values forarl, var2,... are immaterial (can all be zero)

* Advanced options applies only to the nonlinear conjugate gradient and the quasi-Newton
solvers

These options provide more control for you to try different algorithms for testing and comparison.
You may also adjust the values of the built-in variables CTOL and TOLcdrsraint tolerance
CTOL controls how closely a constraint must be met for a solution to be acceptable, e.g., if CTOL
were 0.001, then a constraint such awould be considered satisfied if the value of x satisfied

x <2.001. This can be defined or changed in the same way esrthergence toleranceOL,

which is discussed further in connection with Eied function. SinceMaximize can be used
without constraints, the value of CTOL will sometimes be irrelevant. Its default value is 0.

For an unconstrained maximization problem, the wertn and constraints are unnecessary.

Algorithm For the non-linear case: Levenberg-Marquardt, quasi-Newton, conjugate gradient
For the linear case: simplex method with branch/bound techniques
(Pres=et al, 1992; Polak, 1997; Winston, 1994)
See also Find for more details about solve blogkdinerr, Minimize
mean Statistics
Syntax mean(A)
1 m-1n-1
Description Returns the arithmetic mean of the elementa:ohmeanA) = — z z A ..
mn&o %o
Arguments
A real or complexm x n  matrix or vector
See also gmean, hmean, median, mode
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median Statistics
Syntax median(A)

Description Returns the median of the element#ofThe median is the value above and below which there
are an equal number of valuesAlhas an even number of elememtgdian is the arithmetic
mean of the two central values.

Arguments

A real or complexm x n  matrix or vector
See also gmean, hmean, mean, mode
medsmooth Regression and Smoothing
Syntax medsmooth(vy, n)
Description Creates a new vector, of the same sizeyaby smoothingry with running medians.
Arguments
vy real vector
n odd integern > 0, the size of smoothing window
Example
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Comments Smoothing involves taking a setytand possibly) values and returning a new setyofalues
that is smoother than the original set. Unlike the interpolation funcatepime, Ispline, or
pspline or regression functionsgress orloess, smoothing results in a new setofalues, not
a function that can be evaluated between the data points you specify. If you are intefested in
valuesbetweerthey values you specify, use an interpolation or regression function.

Whenever you use vectors in any of the functions described in this section, be sure that every
element in the vector contains a data value. Because every element in a vector must have a value,
Mathcad assigns 0 to any elements you have not explicitly assigned.

Themedsmooth function is the most robust of Mathcad’s three smoothing functions because it
is least likely to be affected by spurious data points. This function uses a running median
smoother, computes the residuals, smooths the residuals the same way, and adds these two
smoothed vectors together.

medsmooth performs these steps:

1. Finds the running medians of the input veetarWe'll call thisvy’ . Théth element is
given by: vy; = mediar(vyi_(n_l/z), e VY ey VY +(n—1/2)) .
2. Evaluates the residualsr = vy —vy'

3. Smooths the residual vecter, using the same procedure described in step 1, to create a
smoothed residual vectory’

4. Returns the sum of these two smoothed vectonedsmootlvy, n) = vy’ +vr’

medsmooth will leave the first and lagin—1)/2  points unchanged. In practice, the length of
the smoothing windown, should be small compared to the length of the data set.

Algorithm Moving window median method (Lorczak)
See also ksmooth andsupsmooth (alternative smoothing functions available in Mathcad Professional
only)
mhyper (Professional) Special

Syntax mhyper(a, b, 3

Description Returns the value of the confluent hypergeometric functjr(a; b; x) M 6a;b;x)
Arguments

a, b, x real numbers
Comments The confluent hypergeometric function is a solution of the differential equation:

2
X Dd—zy +(b—x Dc%(y— aly= 0 andis also known as the Kummer function.
dx

Many functions are special cases of this, e.g., elementary ones like
exp(x) = mhype(¢ 1 1x) exp(x) Csinh(x) = x Omhyper 1 2 ZX)

and more complicated ones like Hermite functions.

Algorithm Series expansion, asymptotic approximations (Abramowitz and Stegun, 1972)
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min

Vector and Matrix

Syntax min(A)
Description Returns the smallest elementAnIf A is complex, returns min(R&) + inin(Im(A)).
Arguments
A real or complexm x n  matrix or vector
See also max
Minerr
Syntax Minerr(varl, var2,...)
Description Returns values ofarl, var2, ... which come closest to solving a prescribed system of equations,
subject to prescribed inequalities. The number of arguments matches the number of unknowns.
Output is a scalar if only one argument; otherwise it is a vector of answers.
Arguments
varl, var2, ... real or complex variablesarl, var2, ... must be assigned guess values before udingrr.
Example
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Comments TheMinerr function is very similar té-ind and uses exactly the same algorithm. The difference

is that even if a system has no solutidvserr will attempt to find values which come closest
to solving the system. THénd function, on the other hand, will return an error message
indicating that it could not find a solution. You udierr exactly the way you udéind.
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Like Find, type theMinerr function with your list of unknowns. You can’t put numerical values
in the list of unknowns; e.g., in the example abdimerr(0.8, 1) isn't permitted. Lik&ind,
you can typeMinerr or minerr in any style.

Minerr usually returns an answer that minimizes the errors in the consttédnisver,Minerr
cannot verify that its answers represent an absolute minimum for the errors in the constraints.

If you useMinerr in a solve block, you should always include additional checks on the
reasonableness of the results. The built-in variable ERR gives the size of the error vector for the
approximate solution. There is no built-in variable for determining the size of the error for
individual solutions to the unknowns.

Minerris particularly useful for solving certain nonlinear least-squares problems. In the example,
Minerr is used to obtain the unknown parameters in a Weibull distribution. The fugetidit
is also useful for solving nonlinear least-squares problems.

In Mathcad Professional, the context menu (available via right mouse click) associated with
Minerr contains the following options:

» AutoSelect- chooses an appropriate algorithm for you

» Linear option- not available foMinerr (since the objective function is quadratic, hence the
problem can never be linear)

» Nonlinear option- indicates that the problem is nonlinear (and thus applies these general
methods to the problem: the conjugate gradient solver; if that fails to converge, the Leven-
berg-Marquadt solver; if that too fails, the quasi-Newton solveess values forarl,
var2,... greatly affect the solution

* Quadratic option (appears only if the Mathcad Expert Solver product is instaifetizates
that the problem is quadratic (and thus applies quadratic programming methods to the
problem)- guess values fararl, var2,... are immaterial (can all be zero)

* Advanced options applies only to the nonlinear conjugate gradient and the quasi-Newton
solvers

These options provide more control for you to try different algorithms for testing and comparison.
You may also adjust the values of the built-in variables CTOL and TOLcdrstraint tolerance
CTOL controls how closely a constraint must be met for a solution to be acceptable, e.g., if CTOL
were 0.001, then a constraint such awould be considered satisfied if the value of x satisfied

X <2.001. This can be defined or changed in the same way esrthergence tolerancEOL.

The default value for CTOL is 0.

Algorithm For the non-linear case: Levenberg-Marquardt, quasi-Newton, conjugate gradient
For the linear case: simplex method with branch/bound techniques
(Pres=et al, 1992; Polak, 1997; Winston, 1994)
See also Find for more details about solve blockdaximize, Minimize
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Minimize
Syntax

Description

Arguments
f

varl, var2, ...

Examples

Solving
Minimize(f, varl, var2,...)
Returns values ofarl, var2,... which solve a prescribed system of equations, subject to
prescribed inequalities, and which make the fundti@ke on its smallest valu&he number

of arguments matches the number of unknowns, plus one. Output is a scalar if only one unknown;
otherwise it is a vector of answers.

real-valued function
real or complex variablesarl, var2,... must be assigned guess values before idingnize.
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Comments There are five steps to solving a minimization problem:

1. Define the objective functidin

2. Provide an initial guess for all the unknowns you intend to solve for. This gives Mathcad a
place to start searching for solutions.

3. Type the wordjiven. This tells Mathcad that what follows is a system of equality or
inequality constraints. You can tygiven or Given in any style. Just be sure you don't type
it while in a text region.

4. Now type the equations and inequalities in any order below thegiad. Use[Ctrl ]=
to type ‘=.”

5. Finally, type theMinimize function withf and your list of unknowns. You can'’t put nu-
merical values in the list of unknowns; for examplignimize(f, 2) isn’t permitted. Like
given, you can typeninimize or Minimize in any style.
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The Minimize function returns values as follows:

» If there is one unknowrMinimize returns a scalar value that optimiZes

» If there is more than one unknowwjnimize returns a vector of answers; for example,
Minimize(f, varl, var2) returns a vector containing valuesvafl andvar2 that satisfy the
constraints and optimie

The wordGiven, the equations and inequalities that follow, andMlir@imize function form a
solve block

By default, Mathcad examines your objective function and the constraints, and solves using an
appropriate method. In Mathcad Professional, if you want to try different algorithms for testing
and comparison, you can choose options from the context menu associatedhimitize

(available via right mouse click), which include:

» AutoSelect- chooses an appropriate algorithm for you

» Linear option- indicates that the problem is linear (and thus applies linear programming
methods to the problem)guess values fararl, var2,... are immaterial (can all be zero)

» Nonlinear option- indicates that the problem is nonlinear (and thus applies these general
methods to the problem: the conjugate gradient solver; if that fails to converge, the Leven-
berg-Marquadt solver; if that too fails, the quasi-Newton solveiess values fararl,
var2,... greatly affect the solution

* Quadratic option (appears only if the Mathcad Expert Solver product is insteifeti}ates
that the problem is quadratic (and thus applies quadratic programming methods to the
problem)- guess values fararl, var2,... are immaterial (can all be zero)

* Advanced options applies only to the nonlinear conjugate gradient and the quasi-Newton
solvers

These options provide more control for you to try different algorithms for testing and comparison.
You may also adjust the values of the built-in variables CTOL and TOLcdrsgraint tolerance
CTOL controls how closely a constraint must be met for a solution to be acceptable, e.g., if CTOL
were 0.001, then a constraint such awould be considered satisfied if the value of x satisfied

x <2.001. This can be defined or changed in the same way esrthergence toleranceOL,

which is discussed further in connection with Bied function. SinceMinimize can be used
without constraints, the value of CTOL will sometimes be irrelevant. Its default value is 0.

For an unconstrained minimization problem, the w@iden and constraints are unnecessary.

Algorithm For the non-linear case: Levenberg-Marquardt, quasi-Newton, conjugate gradient
For the linear case: simplex method with branch/bound techniques
(Pres=et al, 1992; Polak, 1997; Winston, 1994)
See also Find for more details about solve blockdaximize, Minerr
mod Number Theory/Combinatorics
Syntax mod(n, k)
Description Returns the remainder afwhen divided byk. The result has the same sigmas
Arguments
n, k integers,kz 0
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mode Statistics
Syntax mode(A)
Description Returns the value iA that occurs most often.
Arguments
A real or complexm x n  matrix or vector
See also gmean, hmean, mean, median
multigrid (Professional) Differential Equation Solving
Syntax multigrid(M, ncycle)

Description Solves the Poisson partial differential equation over a planar square regianxThe Mmatrix
gives source function values, whare- 1 is a power of 2 and zero boundary conditions on all
four edges are assumenultigrid uses aifferent algorithm and is faster thaelax, which is
more general.

Arguments

M (1+ 2K) x (1+ 2K) real square matrix containing the source term at each point in the region in
which the solution is sought (for example, the right-hand side of equation below)
ncycle positive integer specifying number of cycles at each level ahthliggrid iteration; a value of 2
generally gives a good approximation of the solution
Example
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Comments Two partial differential equations that arise often in the analysis of physical systems are Poisson's

equation:

2 2
du,o0u _ p(x, y) and its homogeneous form, Laplace’s equation.
ax2 ay?
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Mathcad has two functions for solving these equations over a square region, assuming the values
taken by the unknown functiax(x, y) on all four sides of the boundary are known. The most
general solver is theslax function. In the special case whexg, y) is known to be zero on all

four sides of the boundary, you can usentiudtigrid function instead. This function often solves

the problem faster tharlax. If the boundary condition is the same on all four sides, you can
simply transform the equation to an equivalent one in which the value is zero on all four sides.

Themultigrid function returns a square matrix in which:
» an element's location in the matrix corresponds to its location within the square region, and

* its value approximates the value of the solution at that point.

Algorithm Full multigrid algorithm (Presst al, 1992)
See also relax
norml (Professional) Vector and Matrix
Syntax norm1(M)
Description Returns theL; norm of the matr.
Arguments
M real or complex square matrix
normz2 (Professional) Vector and Matrix
Syntax norm2(M)
Description Returns theL, norm of the matr.
Arguments
M real or complex square matrix
Algorithm Singular value computation (Wilkinson and Reinsch, 1971)
norme (Professional) Vector and Matrix
Syntax norme(M)
Description Returns the Euclidean norm of the matvix
Arguments
M real or complex square matrix
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normi (Professional) Vector and Matrix
Syntax normi(M)
Description Returns the infinity norm of the matri.
Arguments
M real or complex square matrix
numa2str (Professional) String
Syntax num2str(2)
Description Returns the string whose characters correspond to the decimal value of
Arguments
z real or complex number
See also str2num
pbeta Probability Distribution
Syntax pbeta(x, s1, s2
Description Returns the cumulative beta distribution with shape paramstarsis2
Arguments
X real number0<x<1
sl,s2 real shape parametesy,>0,s2>0
Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972)
pbinom Probability Distribution
Syntax pbinom(k, n, p
Description Returns PrKk < k ) when the random variaKlkas the binomial distribution with parameters
andp.
Arguments
k,n integers,0<k<n
p real numbersp<p<1
Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972)
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pcauchy

Probability Distribution

Syntax pcauchy(x, I, 9
Description Returns the cumulative Cauchy distribution.
Arguments
X real number
I real location parameter
S real scale parametes>0
pchisq Probability Distribution
Syntax pchisq(x, d
Description Returns the cumulative chi-squared distribution.
Arguments
X real numberx =0
d integer degrees of freedom > 0
Algorithm Continued fraction and asymptotic expansions (Abramowitz and Stegun, 1972)
permut Number Theory/Combinatorics
Syntax permut(n, K
Description Returns the number of ways of orderimgistinct objects takek at a time.
Arguments
n, k integers, 0<k<n
Comments Each such ordered arrangement is known as a permutation. The number of permutations is
|
P E - (nilk)!
See also combin
pexp Probability Distribution
Syntax pexp(x, r)
Description Returns the cumulative exponential distribution.
Arguments
X real numberx =0

real rate,r >0
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pF

Probability Distribution

Syntax pF(x, d1, d2
Description Returns the cumulative F distribution.
Arguments
X real numberx =0
di, d2 integer degrees of freedomi, > 0, d, >0
Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972)
pgamma Probability Distribution
Syntax pgamma(x, 9
Description Returns the cumulative gamma distribution.
Arguments
X real numberx =0
S real shape parametes>0
Algorithm Continued fraction and asymptotic expansion (Abramowitz and Stegun, 1972)
pgeom Probability Distribution
Syntax pgeom(k, p)
Description Returns PrK < k ) when the random variaKlkas the geometric distribution with parameter
Arguments
k integer,k=0
p real numberQ<p<1
phypergeom Probability Distribution
Syntax phypergeom(m, a, b, i
Description Returns Pr(X< m ) when the random varialleas the hypergeometric distribution with
parameters, bandn.
Arguments
m, a, b, n integersO<m<a , 0<n-m<b ,0sn<a+b
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plnorm Probability Distribution
Syntax plnorm(x, U, 0)
Description Returns the cumulative lognormal distribution.
Arguments
X real numberx=0
u real logmean
g real logdeviationg >0
plogis Probability Distribution
Syntax plogis(x, I, 9
Description Returns the cumulative logistic distribution.
Arguments
X real number
I real location parameter
S real scale parametes>0
pnbinom Probability Distribution
Syntax pnbinom(k, n, p
Description Returns the cumulative negative binomial distribution with parametansip.
Arguments
k,n integers,n>0 ank=0
p real numberQ<p<1
Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972)
pnorm Probability Distribution
Syntax pnorm(x, U, O)
Description Returns the cumulative normal distribution.
Arguments
X real number
u real mean
g real standard deviatiorg > 0
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polyroots Solving
Syntax polyroots(v)
Description Returns the roots of arth degree polynomial whose coefficients are.i@utput is a vector of
lengthn.
Arguments
v real or complex vector of length+ 1
Example
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Comments To find the roots of an expression having the fougx" + ... + v2x2 tvix+y,
you can use thpolyroots function rather than theoot function. Unlikeroot, polyroots does
not require a guess value. Moreoymalyroots returns all roots at once, whether real or complex.
Thepolyroots function can solve only one polynomial equation in one unknownodééor a
more general equation solver. To solve several equations simultaneously, use solveFacks (
or Minerr). To solve an equation symbolicaththat is, to find an exact numerical answer in
terms of elementary functiorschooseSolve for Variable from theSymbolicsmenu or use the
solve keyword.
Algorithm Laguerre with deflation and polishing (Lorczak)
See also Seecoeff keyword for a way to create the coefficient vestimmediately, given a polynomial.
ppois Probability Distribution
Syntax ppois(k, A)
Description Returns the cumulative Poisson distribution.
Arguments
k integer,k=0
A real mean)A >0
Algorithm Continued fraction and asymptotic expansions (Abramowitz and Stegun, 1972)

78

Chapter 1 Functions



predict
Syntax

Description
Arguments

m, n

Example

Comments

Algorithm

(Professional) Interpolation and Prediction

predict(v, m,

Returnsn predicted values based mrconsecutive values from the data vestdElements irv
should represent samples taken at equal intervals.

real vector
integersm>0,n>0
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Interpolation functions such aspline, Ispline, orpspline , coupled withinterp, allow you to

find data points lying between existing data points. However, you may need to find data points
that lie beyond your existing ones. Mathcad provides the funptiatict which uses some of

your existing data to predict data points lying beyond existing ones. This function uses a linear
prediction algorithm which is useful when your data is smooth and oscillatory, although not
necessarily periodic. This algorithm can be seen as a kind of extrapolation method but should
not be confused with linear or polynomial extrapolation.

Thepredict function uses the lastof the original data values to compute prediction coefficients.
After it has these coefficients, it uses the tagtoints to predict the coordinates of tine+()"
point, in effect creating a moving window thatigoints wide.

Burg’s method (Presst al, 1992)
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pspline

Interpolation and Prediction

One-dimensional Case

Syntax

Description

Arguments
VX, VY

pspline(vx, vy)

Returns the vector of coefficients of a cubic spline with parabolic ends. This vector becomes the
first argument of thénterp function.

real vectors of the same size; elementgxofmust be in ascending order

Two-dimensional Case

Syntax pspline(Mxy, Mz)

Description Returns the vector of coefficients of a two-dimensional cubic spline, constrained to be parabolic
at region boundaries spannedNdyy . This vector becomes the first argument ofittierp
function.

Arguments

Mxy n x 2 matrix whose elementﬁ/,lxyi 0 anhtlixyi 1 specifyxhandy-coordinates along the
diagonalof a rectangular grid. This matrix plays exactly the same rol asthe one-
dimensional case described earlier. Since these points describe a diagonal, the elements in each
column ofMxy must be in ascending ordeMxy; | < Mxyj K whenevej )

Mz n x n matrix whosejth element is the-coordinate corresponding to the point= Mxy: o
andy = Mxyj 1 -Mz plays exactly the same roleggin the one-dimensional case above.
Algorithm Tridiagonal system solving (Pressal, 1992, Lorczak)
See also Ispline for more details
pt Probability Distribution
Syntax pt(x, d
Description Returns the cumulative Studenttiistribution.
Arguments
X real numberx=0
d integer degrees of freedom > 0
Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972)
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punif

Probability Distribution

Syntax punif(x, a, B
Description Returns the cumulative uniform distribution.
Arguments
X real number
a,b real numbersa<b
pweibull Probability Distribution
Syntax pweibull(x, 9
Description Returns the cumulative Weibull distribution.
Arguments
real numberx=0
real shape parametes>0
gbeta Probability Distribution
Syntax gbeta(p, s1, s?
Description Returns the inverse beta distribution with shape paramslersds2
Arguments
p real numberQ<p<1
sl,s2 real shape parameters,; >0,s,>0
Algorithm Root finding (bisection and secant methods) (Pe¢ss, 1992)
gbinom Probability Distribution
Syntax gbinom(p, n, 9
Description Returns the inverse binomial distribution function, that is, the smallest iktegénapbinom(k,
n,o)zp.
Arguments
n integer,n>0
p. q real numbersD<p<1 0<qgs<l1
Comments k is approximately the integer for which Rr§ k  p/when the random variablhas the
binomial distribution with parametersandg. This is the meaning of “inverse” binomial
distribution function.
Algorithm Discrete bisection method (Prestsal, 1992)
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gcauchy
Syntax

Description

Arguments

p
I

S

gcauchy(p, I, 9

Returns the inverse Cauchy distribution function.

real numberQ<p<1
real location parameter

real scale parametes>0

Probability Distribution

gchisq
Syntax
Description

Arguments

p
d

Algorithm

qchisq(p, d

Returns the inverse chi-squared distribution.

real numberQ<p<1

integer degrees of freedom > 0

Root finding (bisection and secant methods) (Petss$, 1992)

Probability Distribution

Rational function approximations (Abramowitz and Stegun, 1972)

gexp
Syntax

Description

Arguments

p
r

gexp(p, 1)

Returns the inverse exponential distribution.

real numberQ<p<1

real rate,r >0

Probability Distribution

qF
Syntax

Description

Arguments

p
di, d2

Algorithm

qF(p, d1, d2

Returns the inverse F distribution.

real numberQ<p<1

integer degrees of freedonil > 0,d2>0

Root finding (bisection and secant methods) (Petss$, 1992)

Probability Distribution
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ggamma Probability Distribution
Syntax ggamma(p, 9
Description Returns the inverse gamma distribution.
Arguments
p real numberQ<p<1
S real shape parametes>0
Algorithm Root finding (bisection and secant methods) (Pe¢ss, 1992)
Rational function approximations (Abramowitz and Stegun, 1972)
ggeom Probability Distribution
Syntax ggeom(p, Q)
Description Returns the inverse geometric distribution, that is , the smallest ikktsgénapgeom(k, q) = p.
Arguments
P, q real numbersD<p<1l 0<qg<1
Comments k is approximately the integer for which Rr¢ k  p7when the random variablhas the
geometric distribution with parametgrThis is the meaning of “inverse” geometric distribution
function.
ghypergeom Probability Distribution
Syntax ghypergeom(p, a, b, n
Description Returns the inverse hypergeometric distribution, that is, the smallest iktegénatphyper-
geom(k, a, b,p=p.
Arguments
p real numberQ<p<1
a,b,n integers,0<a ,0<b ,0sn<a+b
Comments k is approximately the integer for which Rr¢ k  p7when the random variablhas the
hypergeometric distribution with parametagd andn. This is the meaning of “inverse”
hypergeometric distribution function.
Algorithm Discrete bisection method (Prestsal, 1992)
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glnorm Probability Distribution
Syntax glnorm(p, U, 0)
Description Returns the inverse log normal distribution.
Arguments
p real numberP<p<1
u logmean
g logdeviation;o >0
Algorithm Root finding (bisection and secant methods) (Pe¢ss, 1992)
glogis Probability Distribution
Syntax glogis(p, I, 9
Description Returns the inverse logistic distribution.
Arguments
p real numberQ<p<1
I real location parameter
S real scale parametes>0
gnbinom Probability Distribution
Syntax gnbinom(p, n, 9
Description Returns the inverse negative binomial distribution function, that is, the smallest integhiat
pnbinom(k, n, g) = p.
Arguments
n integer,n>0
P, q real numbersP<p<1l 0Q<qg<1
Comments k is approximately the integer for which Rr¢ k  p7when the random variablhas the
negative binomial distribution with parameta@ndg. This is the meaning of “inverse” negative
binomial distribution function.
Algorithm Discrete bisection method (Presisal, 1992)
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gnorm Probability Distribution
Syntax gnorm(p, H, O)
Description Returns the inverse normal distribution.
Arguments
p real numberQ<p<1
u real mean
g standard deviatiorg >0
Algorithm Root finding (bisection and secant methods) (Pe¢ss, 1992)
gpois Probability Distribution
Syntax gpois(p, A)
Description Returns the inverse Poisson distribution, that is, the smallest iltsgehatppois(k, A) = p.
Arguments
p real numberQ<p<1
A real mean)\ >0
Comments k is approximately the integer for which Rr¢ k  p7when the random variablhas the
Poisson distribution with paramet&rThis is the meaning of “inverse” Poisson distribution
function.
Algorithm Discrete bisection method (Presisal, 1992)
qr (Professional) Vector and Matrix
Syntax gr(A)
Description Returns an mx (m+ ) matrix whose finstcolumns contain themx m  orthonormal
matrixQ, and whose remainimgcolumns containthemx n upper triangular maRixThese
satisfy the matrix equatioA = Q [R
Arguments
A real mxn matrix
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qt Probability Distribution
Syntax qt(p, d
Description Returns the inverse Studertt@istribution.
Arguments
p real number0<p<1
d integer degrees of freedom > 0
Algorithm Root finding (bisection and secant methods) (Pe¢ss, 1992)
qunif Probability Distribution
Syntax qunif(p, a, B
Description Returns the inverse uniform distribution.
Arguments
p real numberQ<p<1
a, b real numbersa<b
gweibull Probability Distribution
Syntax gweibull(p, 9
Description Returns the inverse Weibull distribution.
Arguments
p real number0<p<1
S real shape parametes> 0
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